Présentation | Soutenance | Premier article | Deuxième article | Manuscrit | A télécharger
Studying the atmosphere's airglow emissions is a broad
research topic, which provides valuable information about the chemical and dynamical
processes controling the state of the upper mesosphere and lower thermosphere.
Even if this aeronomic research field is quite new (the word "airglow" was first used
by [Chamberlain(1961)], a number of studies have been done to examine
the various upper atmosphere emissions. Among those emissions, the O(1D) 630.0 nm
red and O(1S) 557.7 nm green atomic oxygen lines are the most intense and therefore have been
the subject of numerous studies, using two complementary approaches:
observations, involving ground based, rocket and satellite techniques, and modeling.
We focus on the thermospheric dayglow.
Most of the available data were obtained either from the
visible airglow instrument [Hays et al.(1973)], or from the WIND Imaging Interferometer
(WINDII) [Shepherd et al.(1993)], that we will use here.
Ground based daytime observations are more recent because of detection problems
due to the presence of a high solar background against a faint dayglow emission.
The first studies were made possible with the development of dayglow photometers (DGP)
[Narayanan et al.(1989)] and multiwavelength daytime photometers (MWDPM)
[Sridharan et al.(1998)].
In a very recent paper, [Taori et al.(2003)] discussed simultaneous ground based
observations of red and green dayglow and outline the significant importance of
the thermospheric contribution to the 557.7 nm emission,
as already shown by rocket and satellite measurements.
The complementary approach to measurements is modeling:
the different line excitation processes begin to be well understood
as shown by the confrontation of the modelling to the observations.
Several papers review such works, among them [Solomon and Abreu(1989)]
for the red line and [Singh et al.(1996)] for the green line.
Most of the recent studies try to model WINDII observations
whose database covers several years, including all geophysical conditions.
However most of these studies focus on a limited set of data.
Among the most recent ones, [Tyagi and Singh(1998)],
using the Solomon's glow model, have shown a reasonable agreement
between modelled data and a morphological picture of WINDII observations
of the greenline dayglow obtained between December 1992 and April 1993.
[Witasse et al.(1999)] modeled both the red and green lines emissions
for EISCAT-WINDII correlated observations and highlighted the need
for renewed measurements of the EUV solar spectrum,
that is one of the main input to any glow model.
In addition to this input, some of the reaction rate coefficients are still under debate.
For example a new temperature dependant rate coefficient for the reaction
, is proposed by [Hill et al.(2000)].
The [Upadhayaya and Singh(2002)] and the [Singh and Tyagi(2002)] papers
outline the resulting ambiguity. They discuss both the EUV spectrum model
and the [Hill et al.(2000)] new temperature dependant coefficient
for best representing WINDII dayglow emissions.
Our work comes naturally in this modelling perspective
but aims to give a more global picture of the thermospheric WINDII measurements
over its 5 first years of observations, and moreover to discuss
the nowadays ability to model the main features that are observed.
For this purpose, we focus on the altitude and intensity (Volume Emission Rate - VER)
of the 630.0 nm dayglow
and of the thermospheric layer of the 555.7 nm dayglow,
for which a statistical analysis over 5 years is done.
We model the WINDII observations along the satellite orbit,
meaning taking into account the coupled influence of local time
(or Solar Zenith Angle - SZA) and latitude.
This is done for high and low solar activity and for both emissions.
The TRANSCAR model and its glow added software [Witasse et al.(1999)]
that we use here, is presented in the first section.
It has shown its ability to correctly describe high latitude measurements
but needs to be confronted to other geophysical conditions and latitudes.
The calculation of the peak and intensity of the thermospheric emissions
from WINDII instrument is described in the second section.
Then, the results obtained from the modelling of the oxygen
emissions along the WINDII orbit are discussed.
Finally, the statistical behaviour of the thermospheric
red and green oxygen line emissions is presented,
as a function of the two main geophysical parameters that characterize them :
the solar zenith angle and the solar activity.
This statistical study is limited to periods of quiet magnetic activity.
Concerning the photochemical model used to simulate the red and green oxygen lines emissions, all of the production and loss processes with the corresponding rates for the O(1D) and O(1S) states are given in [Witasse et al.(1999)]. The main reactions used in the model are summarized in Table1 and Fig.2 is a scheme that shows the relative contributions of these major processes.
630 nm red line | 557.7 nm green line | ||
Electron impact | Electron impact | ||
![]() |
![]() |
||
Photodissociation of ![]() |
Photodissociation of ![]() |
||
![]() |
![]() |
||
Dissociative recombination | Collisional deactivation of ![]() |
||
![]() |
![]() |
![]() |
This scheme represents the oxygen red and green lines at mid-latitudes
(around 45°), at around 12:00 local time, and for weak solar activity
(
) and weak magnetic activity (
).
The most important production processes at the maximum of the layers
are the photoelectron impacts
and the collisional deactivation of
for the 557.7 nm thermospheric emission,
and the dissociative recombination together with the photoelectron impacts for
the 630.0 nm emission.
Using the TRANSCAR model, [Witasse et al.(1999)] computed the oxygen thermospheric dayglow
at high latitude (Tromsø, 69.6° N).
They first compared the modelled ionosphere to European Incoherent Scatter (EISCAT)
radar measurements. This allowed to calibrate the neutral atmosphere.
Then, they compared the airglow results with WINDII data.
In the present work, no calibration of the neutral atmosphere is performed.
The vertical profiles of the major neutral components are taken directly
from the empirical model MSIS-90 [Hedin(1991)] and the EUVAC model
[Richards et al.(1994)] is used to provide the solar EUV flux.
Electron density and temperature, ion densities and temperatures,
as well as O(1D) and O(1S) emission rates are calculated consistently
within the model throughout the whole thermosphere altitude range
without the use of any other empirical model than the two cited above.
[Lathuillere et al.(2002)] have shown that the MSIS-90 model was fully consistent
with thermospheric temperatures deduced from O(1D) WINDII measurements for quiet
magnetic activity periods and have pointed out that the MSIS-90 model underestimates
these temperatures for large magnetic activity.
Therefore we have limited the present study to days with low magnetic activity.
A discussion about the choice of the solar EUV model in TRANSCAR can be found
in [Lilensten and Blelly(2002)] and [Witasse et al.(1999)].
In this study, we model the oxygen emissions along a whole satellite orbit,
that corresponds to the zonal mean of a given day as described below.
Each point was obtained after TRANSCAR simulation was run for 10 hours (in local time)
in order to reduce dependence on initial conditions and to be sure to be in a steady-state situation.
The fluid equations are solved every second to provide the electron temperature and concentration,
and the kinetic code is called every five minutes in order to regenerate the heating rates and ion productions.
![]() |
![]() |
In figure 3, we consider an atmosphere slab.
It is characterized by a single density value (actually, one per specie),
a single temperature, and a single magnetic angle value.
The line of sight is s, the vertical axis is z. A photoelectron created in A
is projected on the z axis by a Chapman function (point A').
There, the motion of its centre of force is along the local magnetic line.
The isotropy means here that its pitch angle is isotropically distributed.
Let us consider that it goes down with an angle (with a projection ).
In the same slab, an electron created in C would be projected in C'
with an isotropically distributed pitch angle. Its probability to go
upward along the local magnetic line with the pitch angle
is exactly
the same (1/4
) than the first electron to escape A' downward
with a pith angle
.
The conclusion of this geometry is that in A', there are as
many photoelectrons going in any direction.
To envision the following, we consider the figure 4.
The question is now "on which projection is there a variation in the stationary
electron flux ?". This means that we are now dealing not with the photoproduction
but with the electron transport, i.e. with the Boltzmann equation.
In figure 4 a), we consider an horizontal projection.
On the basis of what precedes, the horizontal projection of a secondary electron
created in A' by a collision between a photoelectron
(isotropically created) and a neutral is exactly compensated
by a secondary electron coming from the point D'. This is a consequence
of the isotropy of the photoelectrons (which are now the ionization source).
This is also a consequence of the fact that we suppose that the atmosphere
is horizontally stratified (or, as in figure 3, stratified parallel to
the surface of the Earth).
Therefore, there is no information in the horizontal axis on the variation of the stationary electron flux.
In figure 4 b), we look at the vertical projection.
An electron which escapes the point A' in a given altitude
slab to the lower (respectively larger) altitudes meets a denser
(or weaker) atmosphere. Its absorption by inelastic collision increases
as the collision depth increases.
Therefore, it cannot be compensated by an electron coming from a point
E'
in the closest lower slab. In short, the electron flux variations occur
in the vertical axis (or in the axis perpendicular to the atmospheric slab).
When the magnetic field is also horizontal, the problem becomes simply local
at the scale of the free mean path of the electrons.
This explains why the TRANSCAR model is still valid at middle and low latitudes
in the dayside of the Earth, as the results shown in section 4.1
will confirm. This configuration had already been used to forecast
the ionospheric production in the ionosphere of Titan (Galand et al., 1999).
![]() |
For the 557.7 nm green line thermospheric peak, the profiles are best fitted with a
Chapman-like function written as follows :
![]() |
(2) |
![]() |
![]() |
![]() |
Fig.7 and Fig.8
show red line measurements taken on 29 April 1992, and 9 January 1995.
The f10.7 indice for the first day was equal to 128.5, and
the Ap indice was 7, and for the second day we had f10.7=73.7 and Ap=7.
The upper panel shows the evolution of the latitude with regards to the SZA,
the mid panel shows the maximum
volume emission rate in photons/cm3/s and the bottom panel
corresponds to the altitude in kilometers of the red line emission maximum,
both extracted using equation 1.
For the VER and altitude panels, the dots represent the WINDII data and the diamond-shape
curve corresponds to the TRANSCAR results.
Those diamonds indicate the SZA for which the code was run, and the line is a linear interpolation of the model
results between two runs.
The first noticeable characteristic is a reasonable agreement between the model results and WINDII data :
TRANSCAR reproduces correctly the variation of the measurements with solar zenith angle,
and this, for weak solar activity (on 9 January 1995),
or for strong solar activity (on 29 April 1992).
When taking a closer look at the small solar zenith angles, one can notice a small discrepancy ,
with modeled VER being weaker than the ones measured by WINDII, by about 10%.
This underestimation corresponds on 29 April to low latitudes and on 9 January,
the underestimation occurs on the contrary at middle latitudes, which makes it impossible
to explain the observed discrepancy with a variation in latitudes.
Another point is that TRANSCAR does not yet take into account the influence of
the photoelectrons produced in the conjugate hemisphere and transported
along the magnetic field lines. But [Torr et al.(1990)] showed,
taking the example of the 732 nm and the
337.1 nm emissions
which are mainly produced by the action of those energetic electrons, that conjugate
photoelectrons influence can only be seen during the night in the winter hemisphere.
Thus, including a proper treatment of conjugate photoelectrons in TRANSCAR would not
have been significant in the calculation of dayglow emissions.
On the other hand, a possible cause of the discrepancy observed on the red line
would be the not so good representativity of
the f10.7 index with respect to the solar EUV activity, compared
to the MgII index as discussed in part 4.2.
As the solar EUV influence is the most important for small solar zenith angles,
this would explain why the discrepancy is mainly noticeable below SZA=45°.
TRANSCAR also over-evaluates slightly the peak altitude, with modelled altitudes higher
than the measured ones of about 10 km.
We note that 10 km is the order of magnitude of the variable altitude step of the model in the F region,
but we can not assert that the 10 km discrepancy is due to the model height resolution.
On Fig.7 and Fig.8,
one can also notice the very low scattering of the measurements.
Only for high latitudes on April 9, this scattering increases.
This low scattering which corresponds to very low longitudinal variations, justifies
the zonal means used in the following statistics.
![]() |
![]() |
As for the red line, two dates are presented in order to study the variations of the 557.7 nm
oxygen green emission : 25 October 1992 and 23 December 1995.
Fig.9 and Fig.10
show TRANSCAR results and WINDII data
for those two days, and we remind here that only the maximum of the thermospheric layer
is presented on those plots.
The f10.7 indice for the first day was equal to 146.8, and
the Ap indice was 7, and for the second day we had f10.7=71.2 and Ap=8.
Those two days were chosen for the similarities in the satellite orbits, with low solar zenith angles
corresponding to low latitudes, and solar zenith angles greater than 60° corresponding
to latitudes below 30° South, as shown on the upper panels of
Fig.9 and Fig.10.
The magnetic activity is also nearly identical, meaning that the main
difference between those two sets of measurements comes from the solar flux intensity.
For the strong solar flux conditions (25 October 1992), the measured volume emission rates are
almost twice as strong as for the low solar conditions day (23 December 1995).
Those large differences were properly reproduced by the TRANSCAR model.
However, a small over-estimation is noticeable at low latitudes, but it represents
a deviation of less than 10% from the mean and remains inside the maximum WINDII values.
Despite this discrepancy, TRANSCAR results
reproduce reasonably well the maximum altitude and VER observed by WINDII,
particularly on 23 December, where observations are less scattered.
The larger scattering of WINDII data observed in O(1S),
as compared to O(1D), is a general feature of the measurements and may be related
to the greater importance of dynamical phenomena,
such as tides and planetary waves in the lower thermosphere.
![]() |
Fig.11
shows the volume emission rates and the emission maximum altitude
,
extracted from the WINDII data using the method described in part 3.2,
as a function of f10.7. Each one of the three plots stands for a different solar zenith angle,
respectively 30, 50 and 70° from top to bottom.
Correlation coefficients of VER to f10.7 (assuming a linear relationship)
are indicated on the plots.
Looking at Fig.11 and considering
the intensity of the emission maximum, i.e. ,
one can see that it decreases with the increase of solar zenith angle.
On the top panel (for a solar zenith angle of
=30°), we have
a mean value of roughly 300 photons/cm3/s, while we have on the middle
panel (
=50°) roughly 250 photons/cm3/s, and roughly 230 at
=70°
(bottom panel).
This means a decrease of about 25% when going from a sun almost at zenith
to a grazing sun.
This result is not surprising because
the larger the solar zenith angle, the larger the atmosphere layer and thus, the EUV flux decreases
and the reaction involving electron impacts weakens.
As previously seen on Fig.2 this reaction is one of the
preponderant production process involved in the red line emission.
The solar zenith angle influence is very weak on the emission altitude, and
the red line peak remains around 210 km high when solar zenith angle is smaller or equal to 70°.
Regarding the influence of the f10.7 index, one can say that when the solar activity
and then the EUV flux increases, a greater importance is given
to the reaction involving electron impacts, and then the thermospheric peak
is enhanced, as expected.
When considering a solar zenith angle of 30°, the variation is quite strong :
it increases from 230 to about 350 photons/cm3/s, which is about 50% more,
and we have variations of the same order for solar zenith angles of 50 and 70°.
This raise with solar flux can also be seen with the altitude of the emission maximum,
even if it is less pronouced than for the peak intensity, with a variation of about 10% with
the increase of f10.7 indice, no matter which solar zenith angle considered.
The results of the TRANSCAR simulation presented in section 4.1.1 have been added
on figure Fig.11, as green diamonds. Additionnal TRANSCAR simulations
for intermediate solar activity conditions are shown as red circles.
Within the more global picture displayed by the statistics, one can say that TRANCAR
is able to give a good picture of the main variations of the O(1D) layer maximum,
despite an offset present in the maximum emission altitude, as already noticed in section 4.1.
![]() |
Fig.12 shows the same WINDII volume emission rate
and altitude data plotted this time versus the MgII index.
Correlations coefficients are significantly higher for the two smallest solar zenith angles,
i.e. when the solar EUV influence is the most important.
The remaining scattering of the points can be attributed to latitudinal and seasonal variations.
We have examined all points with nearly the same MgII index but different volume emission rates
and have verified that in all cases the latitude and/or the season were different.
A good example is given by the three points encircled in Fig.12
(bottom panel). In Table2 the Ap, f10.7 and MgII indices
for those days are indicated, together with the latitude corresponding to the solar zenith angle
of 70°. One can see that when the latitude and season is the same (two first points),
the maximum VER are almost identical, however this is not the case for the last point.
Using the f10.7 index would not have allowed such an analysis.
day | 630.0 nm VER peak | MgII | f10.7 | Ap | Latitude |
[cm![]() ![]() |
[degres] | ||||
28 dec 1994 | 201.3 | 0.2585 | 75.9 | 10 | 46 |
21 dec 1994 | 199.8 | 0.2586 | 82.4 | 6 | 42 |
9 jan 1995 | 176.7 | 0.2585 | 73.7 | 7 | -5 |
![]() |
In Fig.13 are presented the results for
the atomic oxygen green thermospheric peak, in the same format than for the red line.
The green line behavior regarding the solar zenith angle is quite similar to the 630.0 nm emission comportment,
with a decrease of the emission intensity and an increase
of the emission altitude with solar zenith angle.
The decrease in emission intensity is strong, starting with a mean value of roughly
600 photons/cm3/s at a solar zenith angle of =30° (upper panel),
and ending with a mean value of roughly
200 photons/cm3/s at a solar zenith angle of
=70° (lower panel).
For the emission altitude, a weak increase with solar zenith angle is noticeable, with an average peak altitude
going up by 20 km when solar zenith angle goes from 30 to 70°.
For the variations with solar activity, we have quite a strong fluctuation on the peak intensity :
it goes from 500 photons/cm3/s
to 750 at solar zenith angle =30°, and we have variations of the same order for solar zenith angles
of 50 and 70°. For the emission altitude,
the variation with the solar flux is quite similar than for the red line,
with an increase of about 10%.
Simulations results have been added as diamonds and circles on Fig.13,
as was done for the red line.
As previously mentioned in section 4.1.2, one immediately notices an over-
estimation of the intensities at SZA=30°. This over-estimation is about 10%
for three cases over four. For larger solar zenith angles, simulations and observations
agree within about 10%. Concerning the maximum emission altitude, TRANSCAR gives a good
representation of the measurements.
Fig.14 show the same data as a function of the MgII proxy.
The correlation coefficients are significantly higher for SZA equal to 30° and 70°.
At 50°, where the scattering of data is the largest, no real improvement is however observed.
![]() |
Those comportments related to the solar zenith angle and solar flux variations
are appropriately reproduced by our 1-D fluid/kinetic model TRANSCAR,
even if small dissimilarities are noticeable. Those discrepancies were
mainly discussed in terms of ability of the f10.7
index to represent the solar EUV thermosphere input.
Future simulation works will try to introduce a different proxy such as MgII as input
to the neutral atmosphere model.
It is likely to be done by using the new DTM-2000 model [Bruinsma et al.(2003)]
which uses this proxy, instead of the MSIS model which involves f10.7.
Possible continuations for statistical data analysis could be first to quantify
the influence of other geophysical parameters
such as the latitude or seasonal variations. This can be performed only for the thermospheric O(1S)
layer, the O(1D) database being too small.
A second interesting study would be to look at the oxygen dayglow variations during active magnetic periods.
Reaching a better understanding in how the airglow fluctuates during magnetic disturbances
would lead to a better knowledge of the high atmosphere response to geomagnetic activity,
which is important for Space Weather users.